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Singular flat G1,,(C) connections over CP! are viewed in three ways, giving
different approaches to their moduli: 1) as spaces of coefficients of linear
meromorphic differential systems on a trivial holomorphic vector bundle,
2) using an infinite dimensional C*° viewpoint, and 3) via Stokes matrices
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Introduction

The perspective here is that the differential equations for isomonodromic deformations
(IMDs) arise naturally from the geometry of moduli spaces of meromorphic connections
on the Riemann sphere, P'(C).

These equations enjoyed a systematic study by Jimbo-Miwa-Ueno [18] where they were
first derived and their complete integrability proven. The Painlevé property of these
equations was demonstrated later by Miwa [21].

This work continues the study of isomonodromic deformations, bringing out the sym-
plectic geometry of the equations in a coordinate free fashion. A sympleciic approach to
the simplest IMD equations has been given by a number of people using somewhat spe-
cialised methods (see Okamoto [22] and Harnad-Wisse [12] for the Painlevé equations and
Hitchin [13] for the Schlesinger equations). Although they are the simplest IMD equa-
tions, the Painlevé and Schlesinger equations are far from simple; they occur in many deep
problems. The main result presented here is a unified description of the symplectic nature
of the full family of IMD equations studied by Jimbo-Miwa-Ueno. The IMD equations
are a flat symplectic (Ehresmann) connection on a bundle of symplectic manifolds over
the space of deformation parameters. A new feature arising in the general case is that
this bundle of symplectic manifolds is not a priori trivial.

This result is obtained from the complex symplectic geometry of the moduli space of
meromorphic connections. Symplectic aspects of such moduli spaces have been studied
previously only in the case where the connections have simple poles (which is closely
related to spaces of flat connections on the punctured surface). Thus a large part of this
work is devoted to finding/describing a natural symplectic structure in the arbitrary order
pole case.

The applications of isomonodromic deformations to mathematical and physical prob-
lems will not be discussed although it should be noted that IMDs underlie most. (perhaps
all) integrable nonlinear partial differential equations. For example the KdV equation has
a reduction to the first Painlevé equation. Also, geometrically the IMD equations are
closely analogous to the Gauss-Manin connection in nonabelian cohomology.

The original impetus for this work came from B.Dubrovin’s work on Frobenius manifolds
[9] together with N.Hitchin’s distillation [13]. The idea that a perspective such as that
outlined here might hold for arbitrary isomonodromic deformations germinated after the
1996 Isomonodromy Conference in Luminy. The lectures of H.Flaschka on the work
[15, 16] of K.Iwasaki were particularly relevant. In a sense the work here is complementary
to Twasaki’s: this work studies deformations of meromorphic connections with arbitrary
order poles over P! whereas [wasaki studies Fuchsian equations (~ connections with simple
poles) over arbitrary compact Riemann surfaces.

This work will appear in the author’s Oxford D.Phil thesis. He would like to thank the

many people who have helped him along the way, especially his supervisor Nigel Hitchin.
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Summary

This work may be summarised in the following five points:

1) Polar Parts Manifolds P(A), P (A)

e The set of isomorphism classes of ‘nice’ meromorphic connections on a trivial holo-
morphic vector bundle over P!(C) is described explicitly and is shown to have a natural
complex Poisson structure.

e The symplectic leaves are obtained by fixing the ‘formal equivalence classes’ at the
poles and are referred to as the ‘Polar parts manifolds’ 7(A) (where A encodes the choice
of formal equivalence classes). They are described in terms of complex coadjoint orbits.

o P(A) is identified with the algebraically completely integrable Hamiltonian systems
(polynomial matrix systems) of Beauville [7] and Adams-Harnad-Hurtubise [1].

e An ‘extended’ version Pey(A) is defined by incorporating ‘compatible framings’ and
not fixing the residues of the formal equivalence classes. Pext(A) is a genuine symplectic
manifold (P{A) may in fact be non-Hausdorff). P(A) is a finite dimensional symplectic
quotient of Pex (A).

2) Monodromy Manifolds M(A), Mei(A)

e A ‘generalised monodromy manifold’ M(A) is defined explicitly (following Jimbo-
Miwa-Ueno [18]) in terms of ‘Stokes matrices’ and ‘connection matrices’.

e M(A) describes the set of isomorphism classes of meromorphic connections with fixed
formal equivalence classes on arbitrary degree zero holomorphic vector bundles over P'.

e Again an ‘extended’ version Me(A) is defined by incorporating compatible fram-
ings and allowing free diagonal residues. It is a complex manifold having M(A) as a
subquotient.

3) C> Approach to Meromorphic Connections

e By studying flat C* singular connections (‘C™ connections with poles’) the notion
of formal equivalence is captured in a C® way. Fixing the formal equivalence classes
corresponds to fixing the ‘Laurent expansions’ of the '™ singular connections.

e The monodromy manifolds M{A) and My (A) are realised in terms of gauge equi-
valence classes of flat singular connections.

e This description yields (at least formally) a symplectic structure on the monodromy
manifolds M (A) and M., (A) following the approach of Atiyah-Bott [3].

4) The Monodromy Map is Symplectic
By thinking in terms of meromorphic connections there is evidently an injective map v :
Pext(A) = Mexi{A) from the extended polar parts manifold to the extended monodromy
manifold. This will be called the (generalised) monodromy map and can be thought of as
a generalised Riemann-Hilbert morphism. It is known to be complex analytic and that
dim{Peq(A)) = dim(Mex (A)). The key result here is:

o The monodromy map v : Pexi(A) = M (A) is symplectic.



5) Isomonodromic Deformations (See Figure 1)

e The extended polar parts and monodromy manifolds form fibre bundles P and M
respectively over a space X of deformation parameters (encoding the positions of the poles
and the the irregular parts of the formal equivalence classes).

e The monodromy bundle M has a flat Ehresmann connection on it, transverse to the
fibres of the map to X (essentially given by keeping the Stokes and connection matrices
constant). This identifies the monodromy data at different values of the deformation
parameters.

By pulling back this connection along the monodromy map, a flat connection is induced
on the polar parts bundle P. The horizontal leaves of this connection on P correspond
to meromorphic connections on P! with the same generalised monodromy; the isomono-
dromic deformation equations are precisely the equations determining these horizontal
leaves. The main result is then:

e The pulled back connection on the polar parts bundle P is symplectic. That is,
the local analytic diffeomorphisms induced by the IMD equations between different fibres
(extended polar parts manifolds) are symplectomorphisms.
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FIGURE 1. Isomonodromic Deformations



1. MORE DETAILS

The rest of this poster gives the definitions and provides more details about the state-
ments in the summary.

Choose m distinct points a1,... ,an, € P' and negative integers ki, ... , k. Let D =
—ki{a1) — - - — km(an) be the corresponding effective divisor. For simplicity choose a
coordinate z on P! with respect to which each q; is finite.

Firstly we will study spaces of pairs (V, V) where V' is a degree zero rank n holomorphic
vector bundle over P! and V is a meromorphic connection on V:

V:V=>Ve®K(D)

satisfying the usual Leibniz rule, where K is the canonical sheaf on P!. Concretely in a
local trivialisation at a;, V has the Laurent series:

V =d+ A, (2 — a)¥dz 4+ Ay, 1 (2 — a)¥ Pz + -
for n x n matrices ‘4; (j > k;). Four important preliminary definitions are given in

Definition 1.1.

¢ A meromorphic connection V is ‘nice’ if in a local trivialisation at each a; the leading
coefficient Ay, is

1) diagonalisable with distinct eigenvalues and k; < —2, or

2} diagonalisable with no eigenvalues differing by nonzero integers and k; = —1.
This condition is independent of the trivialisation and coordinate choice.

¢ T'wo meromorphic connections are ‘formally equivalent at a;” if there is a formal gauge
transformation relating their Laurent series at a;. Explicitly in a local trivialisation over
ai, if V! = d+'By,(z — a;)%dz +- -+, then V and V' are formally equivalent at a; if there
exists F' € GL,(C[(z — a;)]) such that as power series:

F(Ag, (z — 0)%dz + - YF™' — F7YdF = *By,(z — a;)"dz + - -

o A “formal normal form at ¢; is a diagonal connection germ with no holomorphic part:
dz dz

ey o)
where each ‘4% is diagonal. Tt is well known that within each nice formal equivalence
class there is a formal normal form. The ‘irregular part’ of the formal normal form *A° is
the part with poles of order at least 2: 'A% (2 — a;)¥dz + - - - + 'A% odz/(z — a;)*.

e A ‘compatible framing at a;” of a nice connection V on a vector bundle V' is a choice
of isomorphism between the fibre V,, and C*, %g : V,, — C", such that the leading term
"Ay, of V is diagonal in any local trivialisation of V extending .

d—+A% = d - 4%, oA

From now on we will restrict to nice connections since these are simplest yet sufficient
for our purposes (to describe the symplectic nature of isomonodromic deformations). In
fact, to simplify the presentation here it will further be assumed that at any simple pole

IPre-superscripts *4, when used, will denote local information near a; € IP?
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(where k; = ~1) the residue ‘A°_, has distinct eigenvalues, although most of the results
will hold with minor modification for arbitrary nice connections.

2. POLAR PARTS MANIFOLDS

Choose a nice formal normal form *A® at each a; and let A denote this m-tuple of formal
normal forms. Let P(A) denote the set of isomorphism classes of pairs (V, V) where V is
a trivial rank n holomorphic vector bundle over P! and V is a meromorphic connection
on V with formal normal form *A° at @; for each 7 and no other poles.

The main result of this section, Theorem 2.5, is the description of this set as a complex
symplectic quotient of a product of complex coadjoint orbits by GL,(C). As usual for
quotients of affine varieties by reductive groups, P(A) may not be Hausdorff but will
have a dense open subset that is a genuine complex symplectic manifold. Moreover
the symplectic structure obtained in this way is intrinsic (that is, independent of the
coordinate choice made in order to obtain this description).

A similar description is given of the extended polar parts manifolds Pe(A) describ-
ing the set of isomorphism classes of triples (V,V,g) cousisting of a nice meromorphic
connection V on trivial V having fixed irregular part of formal normal form at each «;
(but with arbitrary residue of formal normal form} along with an m-tuple of compatible
framings g = (1g,... ,™y) (one at each ¢;). These extended manifolds seem to be the most
natural level at which to study isomonodromic deformations. They are (genuine) com-
plex symplectic manifolds, they have the polar parts manifolds as symplectic quotients
and have the intriguing property that their symplectomorphism class is not dependent on
the choice A of formal normal forms. The idea of using extended spaces has roots in the
original work of Jimbo-Miwa-Ueno [18] and in work of L.Jeffrey and J.Huebschmann (see
{17, 11)).

2.1. Poisson Structure. To start with, if V is a meromorphic connection on a holo-
morphically trivial vector bundle V — P! with poles of order |k;| at the a;’s, then in any

trivialisation of V it 1s of the form:
dz . dz

1) V= d+Z*Akl G ayE +A G—a)

for some n X n matrices *4; (k; < j < —1).

1,_

Definition 2.1.
e The ‘polar part of V at a;’ is ‘A, e )|k| +- “Aml(z s
e The collection of tuples of n x n matrices ZAJ (k < j < —1) will be denoted by W:

W End(cﬂ)|k1|++|km|

Firstly observe that the group GL,(C) acts by conjugation on W and two connections
are isomorphic if and only if they map to the same G L, (C) orbit in W. Secondly, a
collection of matrices {*4,;} € W determines a meromorphic connection via the expression
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(1) with poles only at the a;’s if and only if there is no further pole at oo, which is equivalent
to the sum of the residues being zero:

(2) A 4™ =0

These two facts fit together naturally in Poisson geometry: somewhat remarkably, the
left-hand side of (2) {the sum of the residues) can be interpreted as the moment map for
the action of GL,(C) on W, once a suitable Poisson structure is defined. This Poisson
structure on W is defined as follows. For a negative integer k£ define the complex Lie

group:
Gy = GL(CC)/(C™) = {go + 1C + - - + gu—1 ¥ |det(go) # 0}
The corresponding Lie algebra gi has elements of the form X = Xo+X1(-+- - -+ X1

for n x n matrices X;. Elements of the dual g; of the Lie algebra are written suggestively
as

(3) =4 %y

¢ N I3
The pairing between g; and gi is given by

(A, X) = Resp(Tr(AX)) ZTr (AiX_1_;)

where Resp : g — End(E) is the residue map, plcklng out the coefficient of d¢/(.
Since it is the dual of a Lie algebra, gi has a natural (Kostant-Kirillov) Poisson struc-
ture. Thus a Poisson structure is obtained on W from the isomorphism

nga X "'ngm;
fA o (A + -+ AT (Mg, 4+ AL CTdC)

implicit in (1) and (3). It is then true that the ‘sum of the residues’ is a moment map for
the GL,(C) action on W:

(2 W — End(C*), {’:Aj} N R LY. [
Putting all this together gives:

Proposition 2.2. The set of isomorphism classes of pairs (V,V) where V is a trivial
rank n holomorphic vector bundle over P! and V is a meromorphic connection on 'V with
poles of order at most |k;| ot a; is isomorphic to

gp, X x gp /GLn(C) = p~H(0)/G L (C)
and so inherits a Poisson structure.

Remark 2.3. This situation has been previously studied by Beauville [7] and Adams-
Harnad-Hurtubise [1] who prove that gi x---xgj //GLn(C) is an algebraically completely
integrable Hamiltonian system (in the Poisson sense). Roughly, their perspective is to
regard this as a space of Higgs bundles rather than as meromorphic connections, but
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of course a trivial vector bundle over a compact Riemann surface has a canonical flat
connection which gives a simple relationship between these two viewpoints.

2.2. Symplectic Leaves. The next step is to examine the symplectic leaves of the Pois-
son quotient g; X --- X gi //GL,(C). Firstly the symplectic leaves of g; x---x g; are
all of the form Oy x --- x O,, where O; C g;, s a coadjoint orbit of Gy,. It follows that
the symplectic leaves of gj X --- x g; //GL,(C) are the symplectic quotients:

O1 X -+ X Op//GLy(C)
The key fact now (which is essentially well known) is:

Proposition 2.4. Two nice meromorphic connections are formally equivalent at a; if and
only if their polar parts at a; lie in the same coadjoint orbit in gj.

Not much more work is then required to prove:

Theorem 2.5. Let A = (... ,*A% ...) be an m-tuple of nice formal normal forms (one at
each a;) and let O; be the Gy, coadjoint orbit through "A° (which is regarded as an element
of gy, in the way described above). Then:

o The set P(A) of isomorphism classes of pairs (V,V) where V is a trivial rank n
holomorphic vector bundle over P! and V is a meromorphic connection on V with formal
normal form 'A% at a; for each i and no other poles is isomorphic to the symplectic quotient
of O1 X ... X O by GL,(C) at the value 0 of the moment map:

P(A) 2 01 % -+ X O /) GL(C) = (o, om0 ) " (0)/GLn(C)

o In this way P(A) inherits an intrinsic symplectic structure. That is, the symplectic
structure obtained is not dependent on the coordinate choice.

2.3. Extended Polar Parts Manifolds. The story for the extended polar parts man-
ifolds is similar. The Gj coadjoint orbits are replaced by larger symplectic manifolds,
‘extended orbits’, encoding the compatible framings and allowing the residues of the
formal normal forms to vary. To start with some more facts about the groups Gy are
needed for k < =2,

There is an exact sequence of groups

1—By— G —G L, (C)——1

where the projection onto GL,(C) is evaluation at ( = 0 and so the kernel By is the
unipotent subgroup of elements with constant term 1. The induced surjection 7 : g} — b}
on the duals of the Lie algebras may be thought of as ‘forgetting the residue’.

Let t C End(C") be the subset of diagonal matrices and choose A}, ..., A%, € tsuch
that A? has distinct diagonal entries. The element

AY = (A + -+ A% (TP) dC

of g; will be regarded as an element of b} (the dual of the Lie algebra of By) via the
projection 7. Let Og be the Bi-coadjoint orbit through A% and observe that each element
in this coadjoint orbit has the same leading term AY¢*d(.
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Definition 2.6. The exiension of the By coadjoint orbit Og is the set:
Op = {(g0, A) € GL,(C) x g} | 7(904g;") € Op}

The element A in a pair (go, A) € Op should be thought of as the polar part of a
connection and gy as a compatible framing. The condition on (gy, A) amounts to fixing
the irregular part of the formal normal form to be that specified by 4%: if (go, A) € Og
then A is completely diagonalisable; for some g € Gy

A=g(ACF 4+ + AP+ A2 ¢ N
for a uniquely determined A%, € t. This procedure of taking the residue of the diagonal-
isation of A defines a surjective map
[IT O g—t
There is a lot more structure to observe:

Lemma 2.7.
o (Decoupling) There is a complex analytic isomorphism

Op = Op x T*GL(C); (g0, 4) = (m(g0495 ™), (90, Res(4)))

where T*GL,(C) 2 GL,(C) x gl ,(C)* via the left trivialisation. In particular Op is a
smooth holomorphic symplectic manifold. B
o There is a free Hamiltonian action of GL,(C) on Op; the action of h € GL,(C) is:

(gﬂs A) s (gﬂhgla h’Ah’_l)

The moment map 1s given by taking the residue of A: (go, A) — Res(A). Under the
decoupling tsomorphism above, GL,(C) acts only on T*GL,(C) and so the symplectic
quotient at the value O of the moment map is just Og:

Op//GL,(C) = Op

o There is a free Hamiltonian action of (C)" on Og; if t € (C*)* then its action on
53 18:
(g(]?A) = (tgﬂn A)
The map py defined above is a moment map for this action. The symplectic quotient at
the value A%, of the moment map is the Gy-coadjoint orbit through the element of g
mapping onto AY € b* under © and having residue A°,:

Op/f a0 (C)" = O(AY + A2 (71 dC)

Sketch. The simplest way to deduce these results is to start with 7*G). Left multi-
plication defines an action of By on iy which lifts to a Hamiltonian action on 7*Gy. Then
observe Op (with the symplectic structure specified above) is the symplectic quotient of
T*Gy by By, over the coadjoint orbit Og O
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There are similar ‘extended orbits’ in the simple pole case k; = —1 but they will not
be discussed here.

The next step is to globalise to obtain the extended polar parts manifolds. Choose
‘AR ,... 'A%, e tfor i = 1,... ,m such that each ‘A7, has distinct diagonal entries. Let
Op, C by, be the corresponding coadjoint orbit for each <. The main result now is

Theorem 2.8.

o The set of isomorphism classes of triples (V,V,g) consisting of a nice meromorphic
connection V on trivial V having fixed irreqular part of formal normal form at each o;
(but with arbitrary residue) along with an m-tuple of compatible framings g = (Yg,... , ™)
18 isomorphic to the symplectic quotient of 531 X e X éBm GL,(C) at the value O of the
moment map: _ B

Pexi(A) 2 Op, x -+ X Op, [/GL,(C)

o In this way Pex(A) inherits an intrinsic symplectic structure.

o The polar parts manifold P(A) is a symplectic quotient of Pex:(A) by a torus (C*)™"
whose moment map fives the values of the residues of the formal normal forms.

Using Lemma (2.7) it then follows that
Poxi(A) 2 Op, x -+ x Og,, x (T*(GL(CY™)//GLA(C))
and hence

Corollary 2.9.

e The extended polar parts manifold is a (genuine) complez manifold.

o The symplectomorphism type of Pex(A) is independent of the irregular part of the
formal normal forms (since the Og,’s are coadjoint orbits of nilpotent Lie groups and
therefore admit global Darbouz coordinates).

This last fact is crucial to understanding irregular isomonodromic deformations.

3. GENERALISED MONODROMY MANIFOLDS

A meromorphic connection on P! with poles at aq,. .. , a,, determines (up to conjugacy)
a monodromy representation:
(4) P ﬂ-l(Pl \ {G]_, v :a'm}) — GL'R(C)

This gives a map, the monodromy map, from connections to representations of the funda-
mental group. If restricted to connections with only simple poles and fixed formal normal
forms, this monodromy map is injective, but for higher order poles local information at
each g; is lost,

The precise data encoding the local information in the germ of a meromorphic connec-
tion at a pole has been described by a number of people (c.f. [6, 5, 19]). That is, they
give an explicit parameterisation of the holomorphic equivalence classes of meromorphic
connection germs. Without going into the details, this data is stored in ‘Stokes matrices’
which can be thought of as a generalisation of the monodromy matrices in (4).
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A bit more precisely, there is a collection of ‘Stokes groups’ (housing the Stokes matrices)
associated to each pole a;:

"Sto; € GL,(C)  j=1,...,2(Jk] — 1)

The odd Stokes groups (*Stoy, *Stos, . . . ) are equal to the group of lower triangular matrices
with ones on the diagonal and the even Stokes groups (*Stos, *Stoy, ... ) are equal to the
group of upper triangular matrices with ones on the diagonal. The classification result
can be paraphrased as

Theorem 3.1. [6, 5, 19] The set of isomorphism classes of pairs (V,g) consisting of
a meromorphic connection germ YV at a; (formally equivalent to 'A°) and a compatible
framing g, is naturally isomorphic to the product of the Stokes groups at a;:

iSto; X - -+ X iStOz([kiiml)
In particular it is isomorphic to an even dimensional complex vector space.

The diagonal subgroup T = (C*}* C GL,{C) acts by conjugation on the Stokes groups
and this action corresponds to changing the choice of compatible framing:

Corollary 3.2. [6, 5, 19] The quotient *Stoy X - -+ X 'Stogr-1)/1" 15 isomorphic to the
set of isomorphism classes of meromorphic connection germs ot a; (that are all formally
equivalent to 'A°).

Global meromorphic connections with compatible framings are then classified by their
Stokes matrices at each @; together with ‘connection matrices’ Ca,... ,Cp € GL,(C)
describing the relation between the framings at a; and each of the other poles a; in turn.

This data (the Stokes and connection matrices) is subject to one condition, ensuring
that the monodromy around a contractible loop is the identity:

(5) (CH-™A-Cp) -+ (C3h -3 - C3)(C5 -4 - Co) - A =1
with
tA = iSZ(|kv:|—1) Tt ngiSliMo for i = ]_7 -,

where 'S; € Sto; is a Stokes matrix, and My := exp(2wi(*A"_})) is the ‘formal mono-
dromy’. This leads us to define the affine variety:

M(A) = {(15, ...,™8,C) € 1Sto x - -+ X ™Sto x GL,(C)™!| relation (5) holds }

where bold typeface denotes the appropriate tuples. The m tori (1"s) acting on the
Stokes groups at each @; act on the connection matrices as well. This gives an action of
T™ 2= (C*)™™ on M(A) given explicitly as:

t(8;) = tiS#7 forj=1,...,2(|k|—1), i=1,...,m, and
t(C;) =t,Cit7t fori=2,...,m.
where t = (f1,... ,t,) € T™ = (C)™.
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Definition 3.3.

¢ The ‘monodromy manifold’ M (A} is the quotient M (A)/(C )™,

e The ‘extended monodromy manifold’ M. {A) is the disjoint union of the M (A)’s
over all the possible choices of the residues of the formal normal forms A.

The main result of this section is

Theorem 3.4.

e The monodromy manifold M(A) is isomorphic to the set of isomorphism classes of
pairs (V, V) where V is a degree zero rank n holomorphic vector bundle over P* and V
is @ meromorphic connection on V with formal normal form *A° at a; for each 1 and no
other poles.

e The extended monodromy manifold Me(A) is isomorphic to the set of isomorphism
classes of triples (V,V,g) consisting of a nice meromorphic connection V on degree zero
V' having fized irreqular part of formal normal form at each a; (bul with arbitrary residue
of formal normal form) along with an m-tuple of compatible framings.

o M (A) is a complez manifold and has M(A) as the subquotient obtained by fizing
the residues of the formal normal forms and quotienting by T™.

Remark 3.5.

e The monodromy manifolds M(A) are regarded as natural generalisation of the sym-
plectic leaves of the moduli space of flat GL,(C) connections on P! \ {a;} since in the
simple pole case that is what they are.

e In particular M({A) should have a complex symplectic structure. A finite dimensional
construction of such is not known. This would generalise the host of results in the simple
pole case. A symplectic structure is provided formally in the next section by describing
M (A) as an infinite dimensional symplectic quotient.

Example 3.6. Consider the case when there are only two marked points: ¢; = 0,az = 00
and the formal normal form at each a; has a pole of order 2:

140 — Ad_j + Q?-I—vz_, A" = —Bdz — Rﬁﬂ—E
z z 2

where each n x n matrix A, B, @, R is diagonal and A, B have distinct eigenvalues. Iso-
monodromic deformations of connections with such formal normal forms yield the third
Painlevé equation in the 2 x 2 case. There is one connection matrix C' € GL,(C) and at
each g; there are two Stokes matrices 'L, *U one lower triangular and one upper triangular.
The extended monodromy manifold is simply

Moy (A) = {'L,’L,'U,*U,C,Q,R | C("U - 'L - e*)C7'(*U - L - eff) =1}

One may see this is a nonsingular manifold by observing it is a covering of its image under
the obvious projection to the manifold {L, U/, C, Q}. This image is open.
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4. C* APPROACH TO MEROMORPHIC CONNECTIONS

Recall that D is the effective divisor ~ki(a1) - - - — kp(ap,) on P, Define the sheaf of
‘smooth functions with poles on D’ to be

Cy = O[D] ®Rp C°

where O is the sheaf of holomorphic functions and C'* the infinitely differentiable complex
functions. Any local section of C$ near g; is of the form f(z)(z — ;)" for a C* function
f. Similarly define sheaves %% of C™ (p,q)-forms with poles on D (so in particular
Cy = QQ"’)). A basic feature is that ‘smooth Laurent expansions’ can be taken at each
a;. This gives a map
Li : 05 (PY) — Clz, 7] 2% @ A*C?

where z; := (z — a;) and % = Cdz; @ Cdz. For example L;(f(2)(z — a)®) = Ti(f)2F
where T;( f) is the Taylor expansion of the C'*° function f at a;.

The Laurent map L; has nice morphism properties: Li(w; A wa) = Li(wy) A Li(ws)
(provided the product doesn’t have poles of too high order) and L; commutes with the
exterior derivative d, where d is defined on the right-hand side in the obvious way (for
example d(z ') = —dz;/22).

Now let £ — P! be a trivial C® rank n complex vector bundle and choose a trivialisa-
tion of it (so sections of E are identified with column vectors of functions etc). Define a
space of € connections on E with poles (on D) in their (1,0) parts:

A= {d+ A4 € Q' (P*,End(E)) & Q% (P, End(E)) }

This is acted on by the gauge group G = Aut(E) & GL,(C®°(P')) (using the trivialisa-
tion). Recall that at each a; a nice diagonal formal normal form ‘A° = ‘A%, (z — a;)"dz +
-4+ 4% _1dz/(z — a;) has been chosen and that A denotes the m-tuple (... ,*4°,...) of
formal normal forms.

Definition 4.1.
e The space of singular connections with fixed Laurent expansions is

A(A):={d+Ae 4 | L;(A) = *A® for each i}

e The group of gauge transformations whose Taylor series preserve the formal normal
forms is
G(A) == {g € G | (Li(g))[A°] =*A° for each 7}
where the square brackets | | denote the gauge action.
e The ‘curvature’ of d + A € A(A) is the nonsingular matrix of two-forms dA + A%,
¢ The ‘flat’ connections are those with zero curvature.

Observe A(A) is an affine space modelled on the €' matrices of one-forms having zero
Taylor expansion at each marked point a;. Also G(A) turns out to be the set of bundle
automorphisms g € G which have Taylor expansion equal to a constant diagonal matrix
at each g;. The main observation now is:
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Proposition 4.2. There is a natural (set-theoretical) bijection between the guotient of
the flat connections with fized Laurent expansions by the group of bundle automorphisms
whose Taylor series preserve the formal normal forms, and the set of isomorphism classes
of pairs (V, V) where V is a degree zero holomorphic vector bundle over P! and V is a
meromorphic connection on V' with poles only at the marked points a; and is formally
equivalent to the formal normal form 'A° ot a; for eachi=1,... ,m:

Ana(A)/G(A) = M(A)

Sketch. Recall M(A) describes meromorphic connections on degree zero bundles.
Given d+ A € Ag(A), set V = d+ A and let V be E with holomorphic structure determ-
ined by the (0, 1)-part of V. Flatness implies V is meromorphic on V. Now the fact that
A has Laurent expansion A% at a; translates into the fact that V is formally equivalent
to 'A? (a formal transformation between the germ of V at a; and the formal normal form
‘A0 is given by the Taylor series of the gauge transformation from the fixed trivialisation
to a local holomorphic trivialisation of V') O

Remark 4.8. The extended monodromy manifold M, (A) may be obtained similarly: a
larger afline space Aei(A) is defined in which the residues of the formal normal forms are
arbitrary diagonal matrices and G(A} is replaced by the group G, of bundle automorphisms
with Taylor expansion 1 at each a;. Observe G(A)/G, = (C*)™™.

4.1. Symplectic Nature. The next step is to interpret the quotient Ag(A)/G(A) as
an infinite dimensional complex symplectic quotient. This is only done in a formal sense
here: appropriate Banach space methods are not known (at least to the author). It is
believed that this is just a technical difficulty and that the procedure here does define a
symplectic form on the extended monodromy manifold Me(A) (and on the smooth part
of M(A)). Some justification for this comes from two facts: firstly in the case when all the
poles are simple, our procedure agrees with the much studied symplectic structure on the
moduli space of flat connections on the punctured P! with fixed monodromy conjugacy
classes. Secondly Theorem 4.5 below implies that a symplectic form is obtained in this
way on a dense open subset of the monodromy manifolds (namely the image of the polar
parts manifolds under the monodromy map).

The main result (the symplectic description of the IMD equations) is independent of
this inadequacy though. The symplectic nature of M(A) serves more to explain why
the IMD equations have a symplectic description. This surely merits further study and
a finite dimensional construction of the symplectic structure should be possible, maybe
building on those of [11, 2, 10] in the nonsingular case or [8, 20] in the parallel world of
meromorphic Higgs bundles.

The C* picture is based on that of Atiyah-Bott [3] for nonsingular unitary connections
over arbitrary compact Riemann surfaces (the lectures [4] of M.Audin give an overview
of the symplectic geometry involved):
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Let @ € A(A) be a singular connection with fixed Laurent expansions. The expression

onlt ) = [ @A)

defines a two-form on the tangent space T, A(A). This determines a closed differential
two-form w on the affine space A(A). It is nondegenerate in the sense that if w, (¢, ¢) =0
for all 4 then ¢ = 0.

Proposition 4.4.
o The gauge action of G(A) on A(A) preserves the symplectic form w.
o Formally, the curvature is a moment map for this action.

Thus if this formal picture was made rigorous, the symplectic quotient at the value 0 of
the moment map is just the subset of flat connections modulo the gauge group and so via
the isomorphism in Proposition 4.2, the monodromy manifold M(A) inherits a symplectic
structure.

The symplectic form w on A(A) can be calculated though and essentially Stokes’ the-
orem yields:

Theorem 4.5. The monodromy map v : Pext(A) — Me(A) is symplectic; more pre-
cisely, locally on Pex(A), v lifts to a map Pext(A) = Aext fiar(A) C Aexi(A) and this is
symplectic.

5. ISOMONODROMIC DEFORMATIONS

The final step is to examine how the picture outlined above behaves as the irregular

parts of the formal normal forms A and the positions ay, ... , a,, of the poles are allowed
to vary. The positive integers n and m and negative integers ky, ..., kn, remain fixed
throughout.

Definition 5.1. The space X of deformation parameters is
X =Xmp X Xy x---x X,

where X, parameterises the marked points a, ..., an:
Xpp = (P')™ \ diagonals.

and X; parameterises the irregular parts of nice degree k; formal normal forms: X; = {0}
ifk; =—1and if k; < —2:

Xi = {(Ap,- . 'Ae) € (£\ A) x #RI72]

where t & C" is the set of diagonal matrices in End{(C®) and A C C" is the set of
diagonals.

Observe X; is homotopy equivalent to C* \ A and recall that the fundamental group of
this is a braid group.
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Each point z € X determines an m-tuple A(z) of irregular parts of formal normal forms
and the positions of m distinct points a,, ... , a,, € P! and so determines an extended polar
parts manifold P, ;= Pey (A(z)) and an extended monodromy manifold M, = M(A(z)).
These fit together into bundles over the space of deformation parameters:

Proposition 5.2. There is a locally trivial fibre bundle P —» X (resp. M — X)), the
polar parts (resp. monodromy) bundle, having P, (resp. M,) as fibre over z € X.

In fact, from their description in terms of Stokes and connection matrices it can be
observed that over a contractible patch U/ C X all of the monodromy manifolds 3, are
isomorphic. Infinitesimally this identification gives:

Proposition 5.3. There is a flat (Ehresmann) connection on the mondromy bundle M
transverse to the fibres of the projection onto X.

Remark 5.4. Globally this identification cannot be made since local (on X) choices are
made to relate the monodromy manifolds (thought of abstactly in terms of meromorphic
connections) to the Stokes and connection matrices. This fact leads to braid group actions
on the monodromy manifolds.

This connection identifies the (generalised) monodromy data of meromorphic connec-
tions on P! which have different formal normal forms/pole positions and so will be called?
the isomonodromy connection. Under this identification points on the same horizontal
leaf of the isomonodromy connection have the same monodromy.

The monodromy map extends to a bundle map v : P = M and the isomonodromy
connection can be pulled back to P (this will be called the isomonodromy connection on
P).

The isomonodromic deformation equations introduced by Jimbo-Miwa-Ueno [18] are
then succinctly described as being this connection on the polar parts bundle P. See
Figure 1. Observe immediately that from this perspective
e The question of Frobenius integrability is transparent- the integral leaves are manifest.
e The flows occur (essentially) on a family of coadjoint orbits. Even this appears to be
new in the general case.

e Since the image v(P) is only a subset of M some flows in P will not be complete;
solutions will have singularities. The ‘Painlevé Property’ of the equations says that these
singularities will be at worst poles.

The main new result here is:

Theorem 5.5.
The isomonodromy connection on the bundle P of polar parts manifolds is symplectic.

2A better name might be the ‘Gauss-Manin connection’ , by analogy with that in non-Abelian co-
homology [23].
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